Harimohan Ghose College

Department of Mathematics

B.Sc. Semester 1 (Honours under CBCS)

Course	Cour	rse Name		Brief Description of the Course	Name of the Faculty
Code					
CC-1	Calculus,	Geometry	&	Unit-1: Calculus: Hyperbolic functions, higher order derivatives, Leibnitz rule	Ratan Jana
	Vector An	alysis		and its applications, curvature, concavity and points of inflection, envelopes,	
				rectilinear asymptotes, curve tracing in Cartesian coordinates, tracing in polar	
				coordinates of standard curves, L'Hospital's rule and its applications. Reduction	
				formulae, derivations and illustrations of reduction formulae, parametric	
				equations, parametrizing a curve, arc length of a curve, arc length of parametric	
				curves, area under a curve, area and volume of surface of revolution.	
				Unit-2: Geometry: Rotation of axes and second-degree equations, classification	Arkopriya Mallick
				of conics using the discriminant, tangent and normal, polar equations of conics,	
				equation of planes, straight lines in 3D, spheres. cylindrical surfaces. central	
				conicoids, paraboloids, plane sections of conicoids, generating lines,	
				classification of quadrics, illustrations of graphing standard quadric surfaces,	
				tangent and normals of conicoids.	
				Unit-3: Vector Analysis: Triple product, vector equations, applications to	Arkopriya Mallick
				geometry and mechanics, introduction to vector functions, operations with	
				vector-valued functions, limits and continuity of vector functions, differentiation	
				and integration of vector functions of one variable.	
CC-2	Algebra			Unit-1: Polar representation of complex numbers, nth roots of unity, De Moivre's	Subhadipa Das
				theorem for rational indices and its applications, exponential, logarithmic,	

trigonometric and hyperbolic functions of complex variable, theory of equations, inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz inequality, linear	
difference equations with constant coefficients.	
Unit-2: Relation, mapping, well-ordering property of positive integers, principles	Shubhankar Podder
of mathematical induction, division algorithm, divisibility and Euclidean	
algorithm, prime numbers and their properties, Euclid's theorem, congruence	
relation between integers, fundamental theorem of arithmetic, Chinese remainder	
theorem, arithmetic functions.	
Unit-3: Rank of a matrix, inverse of a matrix, characterizations of invertible	Subhadipa Das
matrices, systems of linear equations, row reduction and echelon forms, vector	
equations, the matrix equation $AX = B$, solution sets of linear systems,	
applications of linear systems.	

B.Sc. Semester 1 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-1	Mathematics GE-1	Unit-1: Algebra-I: Complex Numbers: De Moivre's Theorem and its	Subhadipa Das
		applications. Exponential, sine, cosine and logarithm of a complex number.	
		Definition of a^{z} ($a \neq 0$). Inverse circular and hyperbolic functions.	
		Polynomials: Fundamental Theorem of Algebra. Polynomials with real	
		coefficients, the n th degree polynomial equation has exactly n roots. Nature of	
		roots of an equation. Statement of Descarte's rule of signs and its applications.	
		Rolle's Theorem and its direct applications. Relation between roots and	
		coefficients, symmetric functions of roots, transformations of equations. Cardan's	
		method of solution of a cubic equation. Rank of a matrix: determination of rank	
		either by considering minors or by sweep-out process. Consistency and solution	
		of a system of linear equations with not more than 3 variables by matrix method.	
		Unit-2: Differential Calculus-I: Rational numbers, geometrical representations,	Ratan Jana
		irrational number, real number represented as point on a line - linear continuum.	
		Real-valued functions defined on an interval, limit of a function (Cauchy's	
		definition). Continuity of a function. Statement of existence of inverse function	
		of a strictly monotone function and its continuity. Derivative, sign of derivative,	
		differential - application in finding approximation. Successive derivative -	
		Leibnitz's theorem and its application. Functions of two and three variables, limit	
		and continuity. Partial derivatives, chain Rule. Exact differentials. Schwarz's	
		Theorem on commutative property of mixed derivatives. Euler's Theorem on	
		homogeneous function of two and three variables. Curvature of plane curves,	

rectilinear asymptotes, envelope of family of straight lines and of curves, singular	
points.	
Unit-3: Differential Equation-I: Order, degree and solution of an ordinary	Shubhankar Podder
	Shuunankai ruuuti
differential equation (ODE), formation of ODE. First order equations: exact	
equations and those reducible to such equation, Euler's and Bernoulli's equations	
(Linear), Clairaut's Equations. Second order linear differential equation with	
constant coefficients, Euler's homogeneous equations. Second order differential	
equation: method of variation of parameters, method of undetermined	
coefficients.	
Unit-4:Coordinate Geometry: Transformations of Rectangular axes: translation,	Arkopriya Mallick
rotation and their combinations, invariants. General equation of second degree in	
x and y: reduction to canonical forms, classification of conic. Pair of straight	
lines. Equations of pair of tangents from an external point, chord of contact, poles	
and polars in case of general conic: particular cases for parabola, ellipse, circle,	
hyperbola. Polar equation of straight lines and circles, polar equation of a conic	
referred to a focus as pole, equation of chord joining two points, equations of	
tangent and normal, sphere and its tangent plane, right circular cone.	

B.Sc. Semester 3 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-5	Theory of Real	Unit-1: Limit & Continuity of Functions: Limits of functions, sequential criterion	Subhadipa Das
	Functions	for limits, infinite limits and limits at infinity. Continuity of a function on an	
		interval and at an isolated point, sequential criteria for continuity, concept of	
		oscillation of a function at a point, bounded functions, neighbourhood properties	
		of continuous functions regarding boundedness and maintenance of same sign,	
		intermediate value theorem, discontinuity of functions, type of discontinuity, step	
		functions, piecewise continuity, monotone functions. Uniform continuity,	
		Lipschitz condition and uniform continuity.	
		Unit-2: Differentiability of Functions: Differentiability of a function at a point	
		and in an interval, meaning of sign of derivative, chain rule, Darboux theorem,	
		Rolle's theorem, Mean value theorems of Lagrange and Cauchy, Taylor's	
		theorem on closed and bounded interval with Lagrange's and Cauchy's form of	
		remainder deduced from Lagrange's and Cauchy's mean value theorem	
		respectively, statement of L' Hospital's rule and its consequences, point of local	
		extremum of a function in an interval, sufficient condition for the existence of a	
		local maximum/minimum of a function at a point, determination of local	
		extremum using first order derivative, application of the principle of	
		maximum/minimum.	01 11 1 D 11
CC-6	Ring Theory & Linear	Unit-1: Ring Theory: Definition and examples of rings, properties of rings,	Shubhankar Podder
	Algebra-I	subrings, integral domains and fields, subfield, characteristic of a ring, ideal, ideal	
		generated by a subset of a ring, factor rings, operations on ideals, prime and	

		maximal ideals. Ring homomorphisms, properties of ring homomorphisms. first isomorphism theorem, second isomorphism theorem, third isomorphism	
		theorem, correspondence theorem, congruence on rings, one-one correspondence between the set of ideals and the set of all congruences on a ring.	
		Unit-2: Linear Algebra: Vector spaces, subspaces, algebra of subspaces, quotient	
		spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Linear transformations, null space, range,	
		rank and nullity of a linear transformation, matrix representation of a linear	
		transformation, change of coordinate matrix, isomorphisms, isomorphism	
		theorems, invertibility and isomorphisms. Eigen values, eigen vectors and	
		characteristic equation of a matrix, Cayley-Hamilton theorem and its use in	
CC-7	Ordinary Differential	finding the inverse of a matrix. Unit-1: Ordinary Differential Equation: Ordinary Differential Equation: First	Arkopriya Mallick
CC-/	Equation & Multivariate	order differential equations, exact differential equations and integrating factors,	Аткорпуа Машск
	Calculus-I	special integrating factors and transformations, linear equations and Bernoulli	
		equations, the existence and uniqueness theorem of Picard. Linear equations and	
		equations reducible to linear form. First order higher degree equations solvable	
		for x, y and p , Clairaut's equations and singular solution. Basic theory of linear	
		systems in normal form, homogeneous linear systems with constant coefficients.	
		Linear differential equations of second order, Wronskian: its properties and	
		applications, Euler equation, method of undetermined coefficients, method of	
		variation of parameters. System of linear differential equations, types of linear	
		systems, differential operators, an operator method for linear systems with	
		constant coefficients. Planar linear autonomous systems: Equilibrium (critical)	
		points, Interpretation of the phase plane and phase portraits. Power series solution	
		of a differential equation about an ordinary point, solution about a regular singular point	
		singular point.	

		Unit-2: Multivariate Calculus-I: Multivariate Calculus-I: Concept of neighbourhood of a point in \mathbb{R}^n $(n > 1)$, interior point, limit point, open set and closed set in \mathbb{R}^n $(n > 1)$. Functions from \mathbb{R}^n $(n > 1)$ to \mathbb{R}^m $(m \ge 1)$, limit and continuity of functions of two or more variables. Partial derivatives, total derivative and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes. Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.	
SEC A	C Programming Language	An overview of theoretical computers, history of computers, overview of architecture of computer, compiler, assembler, machine language, high level language, object-oriented language, programming language and importance of C programming. Constants, Variables and Data type of C-Program: character set, constants and variables data types, expression, assignment statements, declaration. Operation and Expressions: arithmetic operators, relational operators, logical operators. Decision Making and Branching: decision making with if statement, if-else statement, nesting if statement, switch statement, break and continue statement. Control Statements: while statement, do-while statement, for statement. Arrays: one-dimension, two-dimension and multidimensional arrays, declaration of arrays, initialization of one and multi-dimensional arrays. User-defined Functions: definition of functions, scope of variables, return values and their types, function declaration, function call by value, nesting of functions, passing of arrays to functions, recurrence of function. Introduction to library functions.	

B.Sc. Semester 3 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-3	Mathematics GE-3	Unit-1: Integral Calculus: Evaluation of definite integrals, integration as the limit	Shubhankar Podder
		of a sum, reduction formulae. Improper Integrals: μ -test, comparison test, Beta	
		and Gamma functions	
		Unit-2: Numerical Methods: Approximate numbers, significant figures, rounding	Arkopriya Mallick
		off numbers. Error: absolute, relative and percentage. Δ , ∇ and E operators.	
		Interpolation, deduction of Newton's forward and backward interpolation	
		formula with remainder term, Lagrange's interpolation. Trapezoidal and	
		Simpson's $\frac{1}{3}$ -rd formula. To find a real root of an algebraic or transcendental	
		equation, location of root (tabular method), bisection method, Newton-Raphson	
		method.	
		Unit-3: Linear Programming: Linear Programming problem, formulation of	Subhadipa Das
		L.P.P. slack and surplus variables, L.P.P. is matrix form, convex set, hyperplane,	
		extreme points, convex polyhedron, basic solutions and Basic Feasible Solutions	
		(B.F.S.). Fundamental Theorem of L.P.P., reduction of a feasible solution to a	
		B.F.S., standard form of an L.P.P. solution by graphical method, by simplex	
		method and method of penalty. Concept of duality, duality theory, transportation	
		and Assignment problem and their optimal solutions.	
SEC-A	C Programming	An overview of theoretical computers, history of computers, overview of	Ratan Jana
	Language	architecture of computer, compiler, assembler, machine language, high level	
		language, object-oriented language, programming language and importance of C	

programming. Constants, variables and data type of C-Program: character set.
Constants and variables data types, expression, assignment statements,
declaration. Operation and Expressions: arithmetic operators, relational
operators, logical operators. Decision Making and Branching: decision making
with if statement, if-else statement, nesting if statement, switch statement, break
and continue statement. Control Statements: while statement, do-while statement,
for statement. Arrays: one-dimension, two-dimension and multidimensional
arrays, declaration of arrays, initialization of one and multi-dimensional arrays.
User-defined Functions: functions, scope of variables, return values and their
types, function declaration, function call by value, nesting of functions, passing
of arrays to functions, recurrence of function. Introduction to Library functions.

B.Sc. Semester 5 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-11	Probability &	Unit-1: Random experiment, σ -field, sample space, probability as a set function,	Arkopriya Mallick
	Statistics	probability axioms, probability space. finite sample spaces. conditional	
		probability, Bayes theorem, independence, real random variables, cumulative	
		distribution function, probability mass/density functions, mathematical	
		expectation, moments, moment generating function, characteristic function,	
		discrete distributions: uniform, binomial, Poisson, geometric, negative binomial,	
		continuous distributions: uniform, normal, exponential.	
		Unit-2: Joint cumulative distribution function and its properties, joint probability	
		density functions, marginal and conditional distributions, expectation of function	
		of two random variables, moments, covariance, correlation coefficient,	
		independent random variables, joint moment generating function (jmgf) and	
		calculation of covariance from jmgf, characteristic function, conditional	
		expectations, linear regression for two variables, regression curves. Bivariate	
		normal distribution.	
		Unit-3: Markov and Chebyshev's inequality, convergence in probability,	
		statement and interpretation of weak law of large numbers and strong law of large	
		numbers, central limit theorem for independent and identically distributed	
		random variables with finite variance.	
		Unit-4: Sampling and sampling distributions, Estimation of parameters, method	
		of maximum likelihood.	

		Unit-5: Statistical hypothesis, simple hypothesis versus simple alternative,	
		bivariate frequency distribution.	
CC-12	Group Theory-II &	Unit-1: Group Theory: Automorphism, inner automorphism, automorphism	Shubhankar Podder
	Linear Algebra-II	groups, automorphism groups of finite and infinite cyclic groups, applications of	
		factor groups to automorphism groups. External direct product and its properties,	
		the group of units modulo n as an external direct product, internal direct product,	
		converse of Lagrange's theorem for finite abelian group, Cauchy's theorem for	
		finite abelian group, Fundamental theorem of finite abelian groups.	
		Unit-2: Linear Algebra: Inner product spaces and norms, Gram-Schmidt	
		orthonormalization process, orthogonal complements, Bessel's inequality, the	
		adjoint of a linear operator. Bilinear and quadratic forms, diagonalisation of	
		symmetric matrices, second derivative test for critical point of a function of	
		several variables, Hessian matrix, Sylvester's law of inertia, index, signature.	
		Dual spaces, dual basis, double dual, transpose of a linear transformation,	
		annihilators. Eigenspaces of a linear operator, diagonalizability, invariant	
		subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear	
		operator, canonical forms.	
DSEA(1)	Advanced Algebra	Unit-1: Group Theory: Group actions, stabilizers, permutation representation	Shubhankar Podder
		associated with a given group action, applications of group actions: generalized	
		Cayley's theorem, index theorem. Groups acting on themselves by conjugation,	
		class equation and consequences, conjugacy in S_n , p-groups, Sylow's theorems	
		and consequences, Cauchy's theorem.	
		Unit-2: Ring Theory: Principal ideal domain, principal ideal ring, prime element,	
		irreducible element, greatest common divisor (gcd), least common multiple	
		(lcm), expression of gcd, Euclidean domain, relation between Euclidean domain	
		and principal ideal domain. Polynomial rings, division algorithm and	
		consequences, factorization domain, unique factorization domain, irreducible and	
		prime elements in a unique factorization domain, relation between principal ideal	

		domain, unique factorization domain, factorization domain and integral domain,	
		Eisenstein criterion and unique factorization in $Z[x]$. Ring embedding and	
		quotient field, regular rings and their examples, properties of regular ring, ideals	
		in regular rings.	
DSEA(1)	Bio Mathematics	Unit-1: Mathematical biology and the modelling process, continuous models:	Ratan Jana
		Malthus model, logistic growth, Allee effect, Gompertz growth, Michaelis-	
		Menten Kinetics, Holling type growth, bacterial growth in a chemostat,	
		harvesting a single natural population, Prey predator systems and Lotka-Volterra	
		equations, populations in competitions, epidemic models (SI, SIR, SIRS, SIC).	
		Unit-2: Activator-inhibitor system, insect outbreak model: Spruce Budworm.	
		Numerical solution of the models and its graphical representation. Qualitative	
		analysis of continuous models: Steady state solutions, stability and linearization,	
		multiple species communities and Routh-Hurwitz Criteria. Phase plane methods	
		and qualitative solutions, bifurcations and limit cycles with examples in the	
		context of biological scenario. Spatial models: One species model with diffusion.	
		Two species model with diffusion, conditions for diffusive instability, spreading	
		colonies of microorganisms, Blood flow in circulatory system, travelling wave	
		solutions, spread of genes in a population.	
		Unit-3: Discrete models: overview of difference equations, steady state solution	
		and linear stability analysis. Introduction to discrete models, linear models,	
		growth models, decay models, drug delivery problem, discrete prey-predator	
		models, density dependent growth models with harvesting, host-parasitoid	
		systems (Nicholson- Bailey model), numerical solution of the models and its	
		graphical representation. Optimal exploitation models, models in genetics, stage	
		structure models, age structure models.	
DSE B(1)	Linear Programming	Unit-1: Definition of Linear Programming Problem (L.P.P.), formation of L.P.P.,	Subhadipa Das
	& Game Theory	graphical solution of L.P.P., basic solutions and Basic Feasible Solution (B.F.S)	
		with reference to L.P.P. Matrix formulation of L.P.P. Degenerate and Non-	

degenerate B.F.S. Hyperplane, convex set, cone, extreme points, convex hull and convex polyhedron. Supporting and Separating hyperplane. The collection of a feasible solutions of an L.P.P. constitutes a convex set. The extreme points of the convex set of feasible solutions correspond to its B.F.S. and conversely. The objective function has its optimal value at an extreme point of the convex	
feasible solutions of an L.P.P. constitutes a convex set. The extreme points of the convex set of feasible solutions correspond to its B.F.S. and conversely. The	
convex set of feasible solutions correspond to its B.F.S. and conversely. The	
objective function has its optimal value at an extreme point of the convex	
polyhedron generated by the set of feasible solutions. In the absence of	
degeneracy, if the L.P.P. admits of an optimal solution then at least one B.F.S.	
must be optimal. Reduction of a F.S. to a B.F.S.	
Unit-2: Slack and surplus variables, standard form of L.P.P. theory of simplex	
method, feasibility and optimality conditions. The algorithm, two phase method,	
degeneracy in L.P.P. and its resolution.	
Unit-3: Duality theory: the dual of dual is the primal, relation between the	
objective values of dual and the primal problems, relation between their optimal	
values, complementary slackness, duality and simplex method and their	
applications.	
Unit-4: Transportation and assignment problems, mathematical justification for	
optimality criterion, Hungarian method, traveling salesman problem. Concept of	
game problem, rectangular games, pure strategy and mixed strategy, saddle point	
and its existence, optimal strategy and value of the game, necessary and sufficient	
condition for a given strategy to be optimal in a game, concept of dominance,	
Fundamental Theorem of rectangular games, algebraic method, graphical method	
and dominance method of solving rectangular games, inter-relation between	
theory of games and L.P.P.	

B.Sc. Semester 5 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
DSE-A	Graph Theory	Definition, examples and basic properties of graphs, pseudographs, complete	Ratan Jana
		graphs, bi-partite graphs, isomorphism of graphs. Paths and circuits, Eulerian	
		circuits, Hamiltonian cycles, the adjacency matrix, weighted graph, travelling	
		salesman's problem, shortest path, Dijkstra's algorithm, Floyd-Warshall	
		algorithm. Definition of trees and their elementary properties. Definition of	
		planar graphs, Kuratowski's graphs.	

B.Sc. Semester 2 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-3	Real Analysis	Unit-1: Intuitive idea of real numbers, mathematical operations and usual order of real numbers revisited with their properties, idea of countable and	Subhadipa Das
		uncountable sets, concept of bounded and unbounded sets in \mathbb{R} , LUB (supremum), GLB (infimum) of a set and their properties, LUB axiom,	
		Archimedean property of \mathbb{R} , density of rational (and irrational) numbers in \mathbb{R} . Intervals, neighbourhood of a point, interior point, open set, limit point and	
		isolated point of a set, Bolzano-Weierstrass theorem, derived set, closed set.	
		dense set	
		Unit-2: Real sequence, bounded sequence, convergence and non-convergence, Sandwich rule, nested interval theorem, Cauchy's first and second limit	
		theorems. Subsequence, Bolzano-Weierstrass theorem for sequence, Cauchy's	
		convergence criterion, Cauchy sequence.	
		Unit-3: Infinite series, convergence and non-convergence of infinite series,	
		Cauchy criterion, tests for convergence, alternating series, Leibniz test, absolute	
		and conditional convergence.	
CC-4	Group Theory-I	Unit-1: Definition of group, examples of groups, elementary properties of	Shubhankar Podder
		groups, examples of commutative and non-commutative groups, subgroups and	
		examples of subgroups, normalizer, centralizer, center of a group, product of	
		two subgroups.	
		Unit-2: Properties of cyclic groups, classification of subgroups of cyclic	
		groups, cycle notation for permutations, properties of permutations, even and	

odd permutations, alternating group, properties of cosets, order of an element,	
order of a group, Lagrange's theorem and consequences including Fermat's	
Little theorem.	
Unit-3: Normal subgroup and its properties, quotient group, group	
homomorphisms, properties of homomorphisms, correspondence theorem and	
one-one correspondence between the set of all normal subgroups of a group and	
the set of all congruences on that group, Cayley's theorem, properties of	
isomorphisms, first, second and third isomorphism theorems.	

B.Sc. Semester 2 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-2	Mathematics GE-2	Unit-1: Differential Calculus-II: Sequence of real numbers, infinite series,	Ratan Jana
		Rolle's theorem, mean value theorems of Lagrange and Cauchy, Taylor's and	
		Maclaurin's theorems with Lagrange's and Cauchy's from of remainders,	
		Taylor's and Maclaurin's infinite series, L'Hospital's rule, maxima and minima	
		for a function of not more than three variables, Lagrange's method of	
		undetermined multiplier.	
		Unit-2: Differential Equation-II: Linear homogeneous equations with constant	Shubhankar Podder
		coefficients, linear non-homogeneous equations, method of variation of	
		parameters, Cauchy-Euler equation, simultaneous differential equations, simple	
		eigenvalue problem. Order and degree of partial differential equations, linear	
		and non-linear partial differential equations, formation of first order partial	
		differential equations, linear partial differential equation of first order,	
		Lagrange's method, Charpit's method.	
		Unit-3: Vector Algebra: Addition of Vectors, multiplication of a vector by a	Arkopriya Mallick
		scalar, collinear and coplanar vectors, scalar and vector products of two and	
		three vectors, simple applications to problems of Geometry, vector equation of	
		plane and straight line, volume of tetrahedron, applications to problems of	
		Mechanics.	
		Unit-4: Discrete Mathematics: Principle of mathematical induction, division	Subhadipa Das
		algorithm, representation of integer in an arbitrary base, prime integers, some	
		properties of prime integers, fundamental theorem of arithmetic, Euclid's	

theorem, linear Diophantine equations. Congruence relation on integers, ba	sic
properties of this relation, linear congruences, Chinese Remainder Theore	m,
system of linear congruences. Divisibility tests, check-digit and an ISBN,	in
Universal product code, in major credit cards, error detecting capability	ty.
Congruence classes, addition and multiplication of congruence class	es,
Fermat's little theorem, Euler's theorem, Wilson's theorem. Boolean algeb	ra,
Boolean functions, logic gates, minimization of circuits.	

B.Sc. Semester 4 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-8	Riemann Integration &	Unit-1: Riemann integration: Partition of a closed and bounded interval, upper	Ratan Jana
	Series of Functions	Darboux sum and lower Darboux sum, upper integral and lower integral,	
		Darboux's and Riemann's definition of integrability. Concept of negligible set,	
		example of Riemann integrable functions. Integrability of sum, scalar multiple,	
		product, quotient, modulus of Riemann integrable functions. Function defined	
		by definite integral and its properties. Antiderivative, properties of Logarithmic	
		function defined as the definite integral. Fundamental theorem of Integral	
		Calculus, first Mean Value theorem of integral calculus.	
		Unit-2: Improper Integral: Range of integration, finite or infinite, necessary and	
		sufficient condition for convergence of improper integral in both cases, tests of	
		convergence, convergence and working knowledge of Beta and Gamma	
		function and their interrelation.	
		Unit-3: Series of Functions: Sequence of functions, pointwise and uniform	
		convergence, Cauchy criterion of uniform convergence, Weierstrass' M-test,	
		boundedness, continuity, integrability and differentiability of the limit function	
		of a sequence of functions in case of uniform convergence. Series of functions,	
		pointwise and uniform convergence, Cauchy criterion of uniform convergence,	
		Weierstrass' M-test, boundedness, continuity, integrability, differentiability of a	
		series of functions in case of uniform convergence. Power series, fundamental	
		theorem of power series, Cauchy-Hadamard theorem, determination of radius	
		of convergence, uniform and absolute convergence of power series,	

Partial Differential	Unit-1: Partial differential equation: Partial differential equations of the first	Shubhankar Podder
Equation &	order, Lagrange's solution, non-linear first order partial differential equations,	
Multivariate Calculus-II	Charpit's general method of solution. Derivation of heat equation, wave	
	equation and Laplace equation. Classification of second order linear equations	
	as hyperbolic, parabolic or elliptic. Reduction of second order linear equations	
	to canonical forms. The Cauchy problem, Cauchy-Kowalewskaya theorem,	
	Cauchy problem of finite and infinite string. Initial boundary value problems.	
	Semi-infinite string with a fixed end, semi-infinite string with a free end.	
	Equations with non-homogeneous boundary conditions. Non-homogeneous	
	wave equation. Method of separation of variables, solving the vibrating string	
	problem. Solving the heat conduction problem.	
	Unit-2: Multivariate Calculus-II: Multiple integral, concept of upper sum,	
	lower sum, upper integral, lower-integral and double integral, existence theorem	
	for continuous functions, iterated or repeated integral, change of order of	
	integration, triple integral. Change of variables in double integrals and triple	
	integrals. Transformation of double and triple integrals, determination of	
	volume and surface area by multiple integrals, differentiation under the integral	
	sign, Leibniz's rule. Definition of vector field, divergence and curl. Line	
	integrals, applications of line integrals: mass and work. Fundamental theorem	
	theorem, surface integrals, integrals over parametrically defined surfaces.	
	Stoke's theorem, the divergence theorem.	
Mechanics	Unit-1: Coplanar forces in general, an arbitrary force system in space,	Arkopriya Mallick
	equilibrium in the presence of sliding Friction force.	
	Multivariate Calculus-II	Equation ℴ, Lagrange's solution, non-linear first order partial differential equations, Multivariate Calculus-IIMultivariate Calculus-IICharpit's general method of solution. Derivation of heat equation, wave equation and Laplace equation. Classification of second order linear equations as hyperbolic, parabolic or elliptic. Reduction of second order linear equations to canonical forms. The Cauchy problem, Cauchy-Kowalewskaya theorem, Cauchy problem of finite and infinite string. Initial boundary value problems. Semi-infinite string with a fixed end, semi-infinite string with a free end. Equations with non-homogeneous boundary conditions. Non-homogeneous wave equation. Method of separation of variables, solving the vibrating string problem. Solving the heat conduction problem.Unit-2:Multivariate Calculus-II: Multivariate Calculus-II: Multiple integral, concept of upper sum, lower sum, upper integral, lower-integral and double integral, existence theorem for continuous functions, iterated or repeated integral, change of order of integrals. Transformation of double and triple integrals, determination of volume and surface area by multiple integrals, differentiation under the integral sign, Leibniz's rule. Definition of vector field, divergence and curl. Line integrals, applications of line integrals: mass and work. Fundamental theorem for line integrals, conservative vector fields, independence of path. Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, the divergence theorem.MechanicsUnit-1: Coplanar forces in general, an arbitrary force system in space,

		Unit-4: Problems in particle dynamics, planar motion of a particle, motion of a	
		particle in three dimensions.	
		Unit-5: Many particles system, the linear momentum principle, the angular	
		momentum principle, the energy principle.	
SEC B	Mathematical Logic	Unit-1: Propositions, truth table, negation, conjunction and disjunction,	Subhadipa Das
DLC D	Mathematical Logic	implications, biconditional propositions, converse, contra positive and inverse	Suomuaipu Dus
		propositions and precedence of logical operators. General Notions: formal	
		language, object and meta language, general definition of a Formal	
		Theory/Formal Logic.	
		Unit-2: Propositional Logic: formal theory for propositional calculus,	
		derivation, proof, theorem, deduction theorem, conjunctive and disjunctive	
		normal forms, semantics, truth tables, tautology, adequate set of connectives,	
		applications to switching circuits, logical consequence, consistency, maximal	
		consistency, Leindenbaum lemma, soundness and completeness theorems,	
		algebraic semantics.	
		Unit-3: Predicate Logic: first order language, symbolizing ordinary sentences	
		into first order formulae, free and bound variables, interpretation and	
		satisfiability, models, logical validity, formal theory for predicate calculus,	
		theorems and derivations, deduction theorem, equivalence theorem,	
		replacement theorem, choice rule, Prenex normal form, soundness theorem,	
		completeness theorem, compactness theorem, first order theory with equality.	
		completeness meorem, compactness meorem, mist order meory with equality.	

B.Sc. Semester 4 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-4	Mathematics GE-4	Unit-1: Algebra-II: Group, subgroup, ring, field, subring, subfield, vector	Shubhankar Podder
		space, linear combinations, linear dependence and independence of a finite	
		number of vectors, subspace, concepts of generators and basis of a finite	
		dimensional vector space, problems on formation of basis of a vector space, real	
		quadratic form involving not more than three variables, characteristic equation	
		of square matrix of order not more than three, determination of eigenvalues and	
		eigenvectors, Cayley-Hamilton Theorem.	
		Unit-2: Computer Science & Programming: Computer Science and	Ratan Jana
		Programming: historical development, computer generation, computer anatomy	
		different components of a computer system, operating system, hardware and	
		software. Positional number system, binary to decimal and decimal to binary,	
		other systems, binary arithmetic octal, hexadecimal, etc. Storing of data in a	
		computer - BIT, BYTE, WORD etc. Coding of a data-ASCII, etc. Programming	
		Language: machine language, assembly language and high-level language,	
		compiler and interpreter. Object Programme and source programme. Ideas	
		about some HLL- e.g. BASIC, FORTRAN, C, C++, COBOL, PASCAL, etc.	
		Algorithms and Flow Charts- their utilities and important features, ideas about	
		the complexities of an algorithm. Application in simple problems. FORTRAN	
		77/90: introduction, data type-keywords, constants and variables - integer, real,	
		complex, logical, character, subscripted variables, FORTRAN expressions.	

Unit-3: Probability & Statistics: Random experiment, outcome, event, mutually	Arkopriva Mallick
exclusive events, equally likely and exhaustive. Classical definition of	1 2
probability, theorems of total Probability, conditional probability and statistical	
independence, Baye's Theorem. Problems, shortcoming of the classical	
definition, axiomatic approach problems, random variable and its expectation,	
theorems on mathematical expectation, joint distribution of two random	
variables. Theoretical probability distribution discrete and continuous (p.m.f.,	
p.d.f.) binomial, poisson and normal distributions and their properties. Elements	
of statistical methods, variables, attributes. Primary data and secondary data,	
population and sample. Census and sample survey. Tabulation chart and	
diagram, graph, bar diagram, pie diagram etc. Frequency distribution un-	
grouped and grouped cumulative frequency distribution. Histogram, frequency	
curve, measures of central tendencies. Averages: AM, GM, HM, mean, median	
and mode. Measures of Dispersions-range, quartile deviation, mean deviation,	
variance / S.D., moments, skewness and Kurtosis. Sampling Theory: meaning	
and objects of sampling, some ideas about the methods of selecting samples,	
statistic and parameter, sampling proportion. Four fundamental distributions,	
derived from the normal: standard normal distribution, Chi-square distribution,	
student's distribution, Snedecor's F-distribution. Estimation and test of	
significance, statistical inference, theory of estimation point estimation and	
interval estimation, confidence Interval / confidence limit. Statistical	
Hypothesis - null hypothesis and alternative hypothesis, level of significance,	
critical region, type I and II error. Bivariate frequency distribution, scatter	
diagram, co-relation co-efficient, regression lines.	

B.Sc. Semester 6 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-13	Metric Space &	Unit-1: Metric Space: Definition and examples of metric spaces, open ball,	Shubhankar Podder
	Complex Analysis	open set, closed set, interior point and interior of a set, limit point and closure	
		of a set, boundary point and boundary of a set, bounded set and diameter of	
		a set, distance between two sets, subspace of a metric space. Convergent	
		sequence, Cauchy sequence, completeness, Cantor's intersection theorem.	
		Continuity, uniform continuity. Compactness, sequential compactness,	
		Heine-Borel theorem in \mathbb{R} , finite intersection property, continuous functions	
		on compact sets. Concept of connectedness, contraction mappings, Banach	
		Fixed point Theorem and its application to ordinary differential equations.	
		Unit-2: Complex Analysis: Stereographic projection, regions in the complex	
		plane, limits, continuity of functions of complex variable. Derivatives,	
		Cauchy-Riemann equations, sufficient conditions for differentiability,	
		analytic functions, exponential function, logarithmic function, trigonometric	
		functions, hyperbolic functions, Möbius transformation. Power series,	
		Cauchy-Hadamard theorem, radius of convergence, uniform and absolute	
		convergence of power series, analytic functions represented by power series,	
		uniqueness of power series. Contours, complex integration along a contour,	
		upper bounds for moduli of contour integrals. Cauchy- Goursat theorem,	
		Cauchy integral formula.	
CC-14	Numerical Methods	Unit-1: Representation of real numbers, machine Numbers - floating point	Ratan Jana
		and fixed point, sources of Errors, rounding of numbers, significant digits	

		and error propagation in machine arithmetic operations. Numerical	
		Algorithms - stability and convergence.	
		Unit-2: Approximation, interpolation, central interpolation.	
		Unit-3: Numerical differentiation, numerical integration.	
		Unit-4: Bisection method, Secant method, Regula-falsi method, fixed point	
		iteration, Newton-Raphson method. Condition of convergence (if any), order	
		of convergence, rate of convergence of these methods. Modified Newton-	
		Raphson method for multiple roots, complex roots of an algebraic equation	
		by Newton-Raphson method. Numerical solution of system of nonlinear	
		equations - Newton's method.	
		Unit-5: System of linear algebraic equations, Gauss Jacobi method, Gauss	
		Seidel method and their convergence analysis, LU decomposition method.	
		Matrix inversion, the algebraic eigenvalue problem.	
		Unit-6: Single-step difference equation methods- error, convergence. The	
		method of successive approximations (Picard), Euler's method, the modified	
		Euler method, Runge-Kutta methods of orders two and four.	
	Numerical Methods Lab	1. Calculate the sum $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$.	Ratan Jana
(Practical)		2. Enter 100 integers into an array and sort them in an ascending order.	
		3. Bisection method, Newton Raphson method (Simple root, multiple roots,	
		complex roots), Secant method, Regula Falsi method.	
		4. LU decomposition method, Gaussian elimination method, Gauss-Jacobi	
		method, Gauss-Seidel method.	
		5. Lagrange Interpolation, Newton's forward, backward and divided	
		difference interpolations.	
		6. Trapezoidal Rule, Simpson's one third Rule, Weddle's Rule, Gauss	
		Quadrature.	
		7. Method of finding eigenvalue by power method (up to 4×4).	

		8. Fitting a polynomial function (up to third degree).	
		9. Euler method, Modified Euler method, Runge Kutta method (order 4),	
		The method of successive approximations (Picard).	
DSE A(2)	Differential Geometry	Unit-1: Tensor: different transformation laws, properties of tensors, metric	Arkopriya Mallick
		tensor, Riemannian space, covariant differentiation, Einstein space.	
		Unit-2: Theory of space curves: space curves, planer curves, curvature,	
		torsion and Serret-Frenet formula, osculating circles, osculating circles and	
		spheres, existence of space curves, evolutes and involutes of curves. Theory	
		of surfaces: parametric curves on surfaces, direction coefficients, first and	
		second fundamental forms, principal and Gaussian curvatures, lines of	
		curvature, Euler's theorem, Rodrigue's formula, conjugate and asymptotic	
		lines.	
		Unit-3: Developables: developable associated with space curves and curves	
		on surfaces, minimal surfaces. Geodesics, canonical geodesic equations,	
		nature of geodesics on a surface of revolution, Clairaut's theorem, normal	
		property of geodesics, torsion of a geodesic, geodesic curvature, Gauss-	
		Bonnet theorem.	
DSE A(2)	Mathematical Modelling	Unit-1: Power series solution of Bessel's equation and Legendre's equation,	Ratan Jana
		Laplace transform and inverse transform, application to initial value problem	
		up to second order.	
		Unit-2: Monte Carlo simulation modelling: simulating deterministic	
		behavior (area under a curve, volume under a surface), generating random	
		numbers: middle square method, linear congruence, queuing models: harbor	
		system, morning rush hour, overview of optimization modelling. Linear	
		programming model: geometric solution algebraic solution, simplex method,	
		sensitivity analysis	
DSE B(2)	Point Set Topology	Unit-1: Topological spaces, basis and subbasis for a topology,	Subhadipa Das
		neighbourhoods of a point, interior points, limit points, derived set, boundary	

of a set, closed sets, closure and interior of a set, dense subsets, subspace topology, finite product topology, continuous functions, open maps, closed maps, homeomorphisms, topological invariants, metric topology, isometry and metric invariants. Unit-2: First countability, T_1 and T_2 separation axioms of topological spaces, convergence and cluster point of a sequence in topological spaces and some related concepts on first countable as well as on T_2 spaces, Heine's continuity criterion.
maps, homeomorphisms, topological invariants, metric topology, isometry and metric invariants.Unit-2: First countability, T_1 and T_2 separation axioms of topological spaces, convergence and cluster point of a sequence in topological spaces and some related concepts on first countable as well as on T_2 spaces, Heine's continuity
and metric invariants. Unit-2: First countability, T_1 and T_2 separation axioms of topological spaces, convergence and cluster point of a sequence in topological spaces and some related concepts on first countable as well as on T_2 spaces, Heine's continuity
Unit-2: First countability, T_1 and T_2 separation axioms of topological spaces, convergence and cluster point of a sequence in topological spaces and some related concepts on first countable as well as on T_2 spaces, Heine's continuity
convergence and cluster point of a sequence in topological spaces and some related concepts on first countable as well as on T_2 spaces, Heine's continuity
related concepts on first countable as well as on T_2 spaces, Heine's continuity
criterion.
Unit-3: Connected spaces, connected sets in \mathbb{R} , components, compact
spaces, compactness and T_2 , compact sets in \mathbb{R} , Heine-Borel Theorem for
\mathbb{R}^n , real valued continuous function on connected and compact spaces, the
concept of compactness in metric space, sequentially compactness of a
metric space X and the Bolzano- Weiertrass property of X are equivalent.

B.Sc. Semester 6 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
SEC-B	Boolean Algebra	Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras. Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and minimization of switching circuits using Boolean algebra.	Subhadipa Das
DSE-B	Advanced Calculus	 Pointwise and uniform convergence of sequence of functions and series of functions with special reference of power series, Weierstrass M-Test for uniform convergence of sequence of functions and of series of functions, simple applications, statement of important properties like boundedness, continuity, differentiability and integrability of the limit function of uniformly convergent sequence of functions and of the sum function of uniformly convergent series of functions, radius of convergence of power series, term by term integration and term by term differentiation of power series, Abel's theorems on power series, convergence of power series. Periodic function, Fourier series, determination of Fourier coefficients, 	Ratan Jana Shubhankar Podder
		Dirichlet's conditions of convergence and statement of the theorem on convergence of Fourier sine and cosine series.	Shuohankai i oudei

Laplace Transform and its application to ordinary differential equation, Laplace	Arkopriya Mallick
transform and inverse Laplace transform, statement of existence theorem.	