Harimohan Ghose College

Department of Mathematics

B.Sc. Semester 1 (Major under CCF)

Course	Course l	Name	Brief Description of the Course	Name of the Faculty
Code				
MATH-H-	Calculus, (Geometry	Group A: Calculus: Differentiability of a function, meaning of sign of	Shubhankar Podder
CC1-1-Th	& Vector An	alysis	derivative, differentiating hyperbolic functions, higher order derivatives,	
			Leibnitz rule and its applications, indeterminate forms. L'Hospital's rule.	
			Reduction formulae, derivations and illustrations of reduction formulae,	
			parametric equations, parametrizing a curve, arc length of a curve, arc length	
			of parametric curves, area under a curve, area and volume of surface of	
			revolution.	
			Group B: Geometry: Rotation of axes and second degree equations,	Arkopriya Mallick
			classification of conics using the discriminant, reduction to canonical form,	
			tangent and normal, polar equations of conics. Spheres, cylindrical surfaces,	
			central conicoids, paraboloids, plane sections of conicoids, generating lines,	
			identification of quadric surfaces like cone, cylinder, ellipsoid, hyperboloid,	
			classification of quadrics.	
			Group C: Vector Analysis: Triple product, vector equations, applications to	Subhadipa Das
			geometry and mechanics - concurrent forces in a plane, theory of couples,	
			system of parallel forces. Introduction to vector functions, operations with	
			vector-valued functions, limits and continuity of vector functions,	
			differentiation and integration of vector functions of one variable.	

MATH-H-	C Language with	Overview of architecture of computer, compiler, assembler, machine language,	Ratan Jana
SEC1-1-	Mathematical	high level language, object-oriented language, programming language and	
Th	Applications	importance of C programming. Constants, Variables and Data type of C-	
		Program: character set, constants and variables data types, expression,	
		assignment statements, declaration. Operation and Expressions: arithmetic	
		operators, relational operators, logical operators. Decision Making and	
		Branching: decision making with if statement, if-else statement, nesting if	
		statement, switch statement, break and continue statement. Control Statements:	
		while statement, do-while statement, for statement. Arrays: one-dimension,	
		two-dimension and multidimensional arrays, declaration of arrays,	
		initialization of one and multi-dimensional arrays. User-defined Functions:	
		definition of functions, scope of variables, return values and their types,	
		function declaration, function call by value, nesting of functions, passing of	
		arrays to functions, recurrence of function. Introduction to library functions.	

B.Sc. Semester 1 (Minor under CCF)

Course	Course	Name	Brief Description of the Course	Name of the Faculty
Code				
MATH-	Calculus,	Geometry	Group A: Calculus: Differentiability of a function, meaning of sign of	Shubhankar Podder
MD-CC1-	& Vector Ar	nalysis	derivative, differentiating hyperbolic functions, higher order derivatives,	
1-Th			Leibnitz rule and its applications, indeterminate forms. L'Hospital's rule.	
			Reduction formulae, derivations and illustrations of reduction formulae,	
			parametric equations, parametrizing a curve, arc length of a curve, arc length	
			of parametric curves, area under a curve, area and volume of surface of	
			revolution.	
			Group B: Geometry: Rotation of axes and second degree equations,	Arkopriya Mallick
			classification of conics using the discriminant, reduction to canonical form,	
			tangent and normal, polar equations of conics. Spheres, cylindrical surfaces,	
			central conicoids, paraboloids, plane sections of conicoids, generating lines,	
			identification of quadric surfaces like cone, cylinder, ellipsoid, hyperboloid,	
			classification of quadrics.	
			Group C: Vector Analysis: Triple product, vector equations, applications to	Subhadipa Das
			geometry and mechanics - concurrent forces in a plane, theory of couples,	
			system of parallel forces. Introduction to vector functions, operations with	
			vector-valued functions, limits and continuity of vector functions,	
			differentiation and integration of vector functions of one variable.	

MATH-	C Language with	Overview of architecture of computer, compiler, assembler, machine language,	Ratan Jana
MD-	Mathematical	high level language, object-oriented language, programming language and	
SEC1-1-	Applications	importance of C programming. Constants, Variables and Data type of C-	
Th		Program: character set, constants and variables data types, expression,	
		assignment statements, declaration. Operation and Expressions: arithmetic	
		operators, relational operators, logical operators. Decision Making and	
		Branching: decision making with if statement, if-else statement, nesting if	
		statement, switch statement, break and continue statement. Control Statements:	
		while statement, do-while statement, for statement. Arrays: one-dimension,	
		two-dimension and multidimensional arrays, declaration of arrays,	
		initialization of one and multi-dimensional arrays. User-defined Functions:	
		definition of functions, scope of variables, return values and their types,	
		function declaration, function call by value, nesting of functions, passing of	
		arrays to functions, recurrence of function. Introduction to library functions.	

B.Sc. Semester 3 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-5	Theory of Real	Unit-1: Limits of functions, sequential criterion for limits, infinite limits and	Subhadipa Das
	Functions	limits at infinity. Continuity of a function on an interval and at an isolated point,	
		sequential criteria for continuity, concept of oscillation of a function at a point,	
		bounded functions, neighbourhood properties of continuous functions regarding	
		boundedness and maintenance of same sign, intermediate value theorem,	
		discontinuity of functions, type of discontinuity, step functions, piecewise	
		continuity, monotone functions. Uniform continuity, Lipschitz condition and	
		uniform continuity.	
		Unit-2: Differentiability of a function at a point and in an interval, meaning of	
		sign of derivative, chain rule, Darboux theorem, Rolle's theorem, Mean value	
		theorems of Lagrange and Cauchy, Taylor's theorem on closed and bounded	
		interval with Lagrange's and Cauchy's form of remainder deduced from	
		Lagrange's and Cauchy's mean value theorem respectively, statement of L'	
		Hospital's rule and its consequences, point of local extremum of a function in	
		an interval, sufficient condition for the existence of a local maximum/minimum	
		of a function at a point, determination of local extremum using first order	
		derivative, application of the principle of maximum/minimum.	

CC-6	Ring Theory & Linear	Unit-1: Definition and examples of rings, properties of rings, subrings, integral	Shubhankar Podder
	Algebra-I	domains and fields, subfield, characteristic of a ring, ideal, ideal generated by a	
		subset of a ring, factor rings, operations on ideals, prime and maximal ideals.	
		Ring homomorphisms, properties of ring homomorphisms. first isomorphism	
		theorem, second isomorphism theorem, third isomorphism theorem,	
		correspondence theorem, congruence on rings, one-one correspondence	
		between the set of ideals and the set of all congruences on a ring.	
		Unit-2 Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear	
		combination of vectors, linear span, linear independence, basis and dimension,	
		dimension of subspaces. Linear transformations, null space, range, rank and	
		nullity of a linear transformation, matrix representation of a linear	
		transformation, change of coordinate matrix, isomorphisms, isomorphism	
		theorems, invertibility and isomorphisms. Eigen values, eigen vectors and	
		characteristic equation of a matrix, Cayley-Hamilton theorem and its use in	
		finding the inverse of a matrix.	
CC-7	Ordinary Differential	Unit-1: Ordinary Differential Equation: First order differential equations, exact	Arkopriya Mallick
	Equation & Multivariate	differential equations and integrating factors, special integrating factors and	
	Calculus-I	transformations, linear equations and Bernoulli equations, the existence and	
		uniqueness theorem of Picard. Linear equations and equations reducible to	
		linear form. First order higher degree equations solvable for x, y and p ,	
		Clairaut's equations and singular solution. Basic theory of linear systems in	
		normal form, homogeneous linear systems with constant coefficients. Linear	
		differential equations of second order, Wronskian: its properties and	
		applications, Euler equation, method of undetermined coefficients, method of	
		variation of parameters. System of linear differential equations, types of linear	
		systems, differential operators, an operator method for linear systems with	
		constant coefficients. Planar linear autonomous systems: Equilibrium (critical)	
		points, Interpretation of the phase plane and phase portraits. Power series	

		solution of a differential equation about an ordinary point, solution about a	
		regular singular point.	
		Unit-2: Multivariate Calculus-I: Concept of neighbourhood of a point in	
		\mathbb{R}^n ($n > 1$), interior point, limit point, open set and closed set in \mathbb{R}^n ($n > 1$).	
		Functions from \mathbb{R}^n $(n > 1)$ to \mathbb{R}^m $(m \ge 1)$, limit and continuity of functions	
		of two or more variables. Partial derivatives, total derivative and	
		differentiability, sufficient condition for differentiability. Chain rule for one and	
		two independent parameters, directional derivatives, the gradient, maximal and	
		normal property of the gradient, tangent planes. Extrema of functions of two	
		variables, method of Lagrange multipliers, constrained optimization problems.	
SEC A	C Programming	An overview of theoretical computers, history of computers, overview of	Ratan Jana
	Language	architecture of computer, compiler, assembler, machine language, high level	
		language, object-oriented language, programming language and importance of	
		C programming. Constants, Variables and Data type of C-Program: character	
		set, constants and variables data types, expression, assignment statements,	
		declaration. Operation and Expressions: arithmetic operators, relational	
		operators, logical operators. Decision Making and Branching: decision making	
		with if statement, if-else statement, nesting if statement, switch statement, break	
		and continue statement. Control Statements: while statement, do-while	
		statement, for statement. Arrays: one-dimension, two-dimension and	
		multidimensional arrays, declaration of arrays, initialization	
		of one and multi-dimensional arrays. User-defined Functions: definition of	
		functions, scope of variables, return values and their types, function declaration,	
		function call by value, nesting of functions, passing of arrays to functions,	
		recurrence of function. Introduction to library functions.	

B.Sc. Semester 3 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-3	Mathematics GE-3	Unit-1: Integral Calculus: Evaluation of definite integrals, integration as the	Shubhankar Podder
		limit of a sum, reduction formulae. Improper Integrals: μ -test, comparison test,	
		Beta and Gamma functions	
		Unit-2: Numerical Methods: Approximate numbers, significant figures,	Arkopriya Mallick
		rounding off numbers. Error: absolute, relative and percentage. Δ , ∇ and E	
		operators. Interpolation, deduction of Newton's forward and backward	
		interpolation formula with remainder term, Lagrange's interpolation.	
		Trapezoidal and Simpson's $\frac{1}{3}$ -rd formula. To find a real root of an algebraic or	
		transcendental equation, location of root (tabular method), bisection method,	
		Newton-Raphson method.	
		Unit-3: Linear Programming: Linear Programming problem, formulation of	Subhadipa Das
		L.P.P. slack and surplus variables, L.P.P. is matrix form, convex set, hyperplane,	
		extreme points, convex polyhedron, basic solutions and Basic Feasible	
		Solutions (B.F.S.). Fundamental Theorem of L.P.P., reduction of a feasible	
		solution to a B.F.S., standard form of an L.P.P. solution by graphical method, by	
		simplex method and method of penalty. Concept of duality, duality theory,	
		transportation and Assignment problem and their optimal solutions.	

SEC-A	C Programming	An overview of theoretical computers, history of computers, overview of	Ratan Jana
	Language	architecture of computer, compiler, assembler, machine language, high level	
		language, object-oriented language, programming language and importance of	
		C programming. Constants, variables and data type of C-Program: character set.	
		Constants and variables data types, expression, assignment statements,	
		declaration. Operation and Expressions: arithmetic operators, relational	
		operators, logical operators. Decision Making and Branching: decision making	
		with if statement, if-else statement, nesting if statement, switch statement, break	
		and continue statement. Control Statements: while statement, do-while	
		statement, for statement. Arrays: one-dimension, two-dimension and	
		multidimensional arrays, declaration of arrays, initialization of one and multi-	
		dimensional arrays. User-defined Functions: functions, scope of variables,	
		return values and their types, function declaration, function call by value,	
		nesting of functions, passing of arrays to functions, recurrence of function.	
		Introduction to Library functions.	

B.Sc. Semester 5 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-11	Probability & Statistics	Unit-1: Random experiment, σ -field, sample space, probability as a set function, probability axioms, probability space. finite sample spaces. conditional probability, Bayes theorem, independence, real random variables, cumulative distribution function, probability mass/density functions, mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential.	Arkopriya Mallick
		 Unit-2: Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, moments, covariance, correlation coefficient, independent random variables, joint moment generating function (jmgf) and calculation of covariance from jmgf, characteristic function, conditional expectations, linear regression for two variables, regression curves. Bivariate normal distribution. Unit-3: Markov and Chebyshev's inequality, convergence in probability, statement and interpretation of weak law of large numbers and strong law of 	

		large numbers, central limit theorem for independent and identically distributed	
		random variables with finite variance.	
		Unit-4: Sampling and sampling distributions, Estimation of parameters, method	
		of maximum likelihood.	
		Unit-5: Statistical hypothesis, simple hypothesis versus simple alternative,	
		bivariate frequency distribution.	
CC-12	Group Theory-II &	Unit-1: Group Theory: Automorphism, inner automorphism, automorphism	Shubhankar Podder
	Linear Algebra-II	groups, automorphism groups of finite and infinite cyclic groups, applications	
		of factor groups to automorphism groups. External direct product and its	
		properties, the group of units modulo n as an external direct product, internal	
		direct product, converse of Lagrange's theorem for finite abelian group,	
		Cauchy's theorem for finite abelian group, Fundamental theorem of finite	
		abelian groups.	
		Unit-2: Linear Algebra: Inner product spaces and norms, Gram-Schmidt	
		orthonormalisation process, orthogonal complements, Bessel's inequality, the	
		adjoint of a linear operator. Bilinear and quadratic forms, diagonalisation of	
		symmetric matrices, second derivative test for critical point of a function of	
		several variables, Hessian matrix, Sylvester's law of inertia, index, signature.	
		Dual spaces, dual basis, double dual, transpose of a linear transformation,	
		annihilators. Eigenspaces of a linear operator, diagonalizability, invariant	
		subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear	
		operator, canonical forms.	
DSEA(1)	Bio Mathematics	Unit-1: Mathematical biology and the modelling process, continuous models:	Ratan Jana
		Malthus model, logistic growth, Allee effect, Gompertz growth, Michaelis-	
		Menten Kinetics, Holling type growth, bacterial growth in a chemostat,	
		harvesting a single natural population, Prey predator systems and Lotka-	
		Volterra equations, populations in competitions, epidemic models (SI, SIR,	
		SIRS, SIC).	

[
		Unit-2: Activator-inhibitor system, insect outbreak model: Spruce Budworm.	
		Numerical solution of the models and its graphical representation. Qualitative	
		analysis of continuous models: Steady state solutions, stability and	
		linearization, multiple species communities and Routh-Hurwitz Criteria. Phase	
		plane methods and qualitative solutions, bifurcations and limit cycles with	
		examples in the context of biological scenario. Spatial models: One species	
		model with diffusion. Two species model with diffusion, conditions for	
		diffusive instability, spreading colonies of microorganisms, Blood flow in	
		circulatory system, travelling wave solutions, spread of genes in a population.	
		Unit-3: Discrete models: overview of difference equations, steady state solution	
		and linear stability analysis. Introduction to discrete models, linear models,	
		growth models, decay models, drug delivery problem, discrete prey-predator	
		models, density dependent growth models with harvesting, host-parasitoid	
		systems (Nicholson- Bailey model), numerical solution of the models and its	
		graphical representation. Optimal exploitation models, models in genetics, stage	
		structure models, age structure models.	
DSE B(1)	Linear Programming	Unit-1: Definition of Linear Programming Problem (L.P.P.), formation of	Subhadipa Das
	& Game Theory	L.P.P., graphical solution of L.P.P., basic solutions and Basic Feasible Solution	
		(B.F.S) with reference to L.P.P. Matrix formulation of L.P.P. Degenerate and	
		Non-degenerate B.F.S. Hyperplane, convex set, cone, extreme points, convex	
		hull and convex polyhedron. Supporting and Separating hyperplane. The	
		collection of a feasible solutions of an L.P.P. constitutes a convex set. The	
		extreme points of the convex set of feasible solutions correspond to its B.F.S.	
		and conversely. The objective function has its optimal value at an extreme point	
		of the convex polyhedron generated by the set of feasible solutions. In the	
		absence of degeneracy, if the L.P.P. admits of an optimal solution then at least	
		one B.F.S. must be optimal. Reduction of a F.S. to a B.F.S.	
L	1		

Unit-2: Slack and surplus variables, standard form of L.P.P. theory of simplex
method, feasibility and optimality conditions. The algorithm, two phase
method, degeneracy in L.P.P. and its resolution.
Unit-3: Duality theory: the dual of dual is the primal, relation between the
objective values of dual and the primal problems, relation between their optimal
values, complementary slackness, duality and simplex method and their
applications.
Unit-4: Transportation and assignment problems, mathematical justification for
optimality criterion, Hungarian method, traveling salesman problem. Concept
of game problem, rectangular games, pure strategy and mixed strategy, saddle
point and its existence, optimal strategy and value of the game, necessary and
sufficient condition for a given strategy to be optimal in a game, concept of
dominance, Fundamental Theorem of rectangular games, algebraic method,
graphical method and dominance method of solving rectangular games, inter-
relation between theory of games and L.P.P.

B.Sc. Semester 5 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
DSE-A	Graph Theory	Definition, examples and basic properties of graphs, pseudographs, complete	Ratan Jana
		graphs, bi-partite graphs, isomorphism of graphs. Paths and circuits, Eulerian	
		circuits, Hamiltonian cycles, the adjacency matrix, weighted graph, travelling	
		salesman's problem, shortest path, Dijkstra's algorithm, Floyd-Warshall	
		algorithm. Definition of trees and their elementary properties. Definition of	
		planar graphs, Kuratowski's graphs.	

B.Sc. Semester 2 (Major under CCF)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
MATH-H-	Basic Algebra	Group A: Polar representation of complex numbers, nth roots of unity, De	Subhadipa Das
CC2-2-TH		Moivre's theorem for rational indices and its applications, exponential,	
		logarithmic, trigonometric and hyperbolic functions of complex variable,	
		theory of equations, inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz	
		inequality.	
		Group B: Relation, mapping, well-ordering property of positive integers,	Shubhankar Podder
		principles of mathematical induction, division algorithm, divisibility and	
		Euclidean algorithm, prime numbers and their properties, Euclid's theorem,	
		congruence relation between integers, fundamental theorem of arithmetic,	
		Chinese remainder theorem, arithmetic functions.	
		Group C: Systems of linear equations, homogeneous and non-homogeneous	Arkopriya Mallick
		systems, existence and uniqueness of solution, row reduction and echelon	
		forms, uniqueness of reduced echelon form, rank of a matrix and	
		characterization of invertible matrices, pivot positions, basic and free variables,	
		parametric description of the solution set, existence and uniqueness theorem.	
		Vectors in \mathbb{R}^n , algebraic and geometric properties of the vectors, vector form	

		of a linear system and the column picture, existence of solutions and linear	
		combination of vectors, geometry of linear combination and subsets spanned	
		by some vectors, uniqueness of solution and linear independence of vectors,	
		algebraic and geometric characterizations of linearly independent subsets.	
MATH-H-	Python Programming		Ratan Jana
SEC 2.1-	and Introduction to	installing python, running code in the interactive shell, IDLE, input, processing	Katan Jana
2-Th	Latex	and output, editing, saving, and running a script, debugging: syntax errors,	
2-111	Latex	runtime errors, semantic errors. Data types and expressions: variables and the	
		assignment statement, program comments and doc strings, data types-numeric	
		integers and floating-point numbers, Boolean string, mathematical operators,	
		PEMDAS, arithmetic expressions, mixed-mode arithmetic and type	
		conversion, type(), input(), print(), program comments, id(), int(), str(),	
		float(). Loops and selection statements: definite iteration: for loop, executing	
		statements a given number of times, specifying steps using range(), loops that	
		count down, Boolean and comparison operators and expressions, conditional	
		and alternative statements- chained and nested conditionals: if, if-else, if-else	
		if else, nested if, nested if-else. Compound Boolean expressions, conditional	
		iteration: while loop-with true condition, break statement, random numbers.	
		loop logic, errors and testing. Strings, lists, tuple, dictionary: accessing	
		characters, indexing, slicing, replacing. Concatenation (+), repetition (*),	
		searching a substring with the 'in' operator, traversing string using while and	
		for. String methods-find, join, split, lower, upper. len(). Lists-accessing and	
		slicing, basic operations (comparison,+), list membership and for loop,	
		replacing element (list is mutable), list methods append, extend, insert, pop,	
		sort. Max(), min(), tuples, dictionaries-creating a dictionary, adding keys and	
		replacing values, dictionary - key(), value(), get(), pop(), traversing a	
		dictionary. Math module: sin(), cos(), exp(), sqrt(), constants-pi, e. Design with	
		functions: defining simple functions-parameters and arguments, the return	

statement, tuple as return value, Boolean functions, defining a main function,	
defining and tracing recursive functions. Working with Numbers: calculating	
the factors of an integer, generating multiplication tables, con	
Group B: Introduction to Latex: Introduction to LATEX: preparing a basic	
LATEX file, compiling LATEX file. Document classes: different type of	
document classes, e.g., article, report, book etc. Page Layout: titles, abstract,	
chapters, sections, subsections, paragraph, verbatim, references, equation	
references, citation. List structures: itemize, enumerate, description etc.	
Representation of mathematical equations: inline math, equations, fractions,	
matrices, trigonometric, logarithmic, exponential functions, line, surface,	
volume integrals with and without limits, closed line integral, surface integrals,	
scaling of parentheses, brackets etc. Customization of fonts: bold fonts,	
emphasise, mathbf, mathcal etc, changing sizes large, larger, huge, tiny etc.	
Writing tables: creating tables with different alignments, placement of	
horizontal, vertical lines. Figures: changing and placing the figures, alignments	
Packages: amsmath, amssymb, graphics, graphicx, geometry, algorithms,	
color, hyperref etc. Use of different LATEX commands and environments,	
changing the type style, symbols from other languages, special characters.	

B.Sc. Semester 2 (Minor under CCF)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
MATH-	Basic Algebra	Group A: Polar representation of complex numbers, nth roots of unity, De	Subhadipa Das
MD-CC2-		Moivre's theorem for rational indices and its applications, exponential,	
2-TH		logarithmic, trigonometric and hyperbolic functions of complex variable,	
		theory of equations, inequality involving $AM \ge GM \ge HM$, Cauchy-Schwartz	
		inequality.	
		Group B: Relation, mapping, well-ordering property of positive integers,	Shubhankar Podder
		principles of mathematical induction, division algorithm, divisibility and	
		Euclidean algorithm, prime numbers and their properties, Euclid's theorem,	
		congruence relation between integers, fundamental theorem of arithmetic,	
		Chinese remainder theorem, arithmetic functions.	
		Group C: Systems of linear equations, homogeneous and non-homogeneous	Arkopriya Mallick
		systems, existence and uniqueness of solution, row reduction and echelon	
		forms, uniqueness of reduced echelon form, rank of a matrix and	
		characterization of invertible matrices, pivot positions, basic and free variables,	
		parametric description of the solution set, existence and uniqueness theorem.	
		Vectors in \mathbb{R}^n , algebraic and geometric properties of the vectors, vector form	
		of a linear system and the column picture, existence of solutions and linear	
		combination of vectors, geometry of linear combination and subsets spanned	

		by some vectors, uniqueness of solution and linear independence of vectors,	
		algebraic and geometric characterizations of linearly independent subsets.	
MATH-	Python Programming	Group A: Python Programming: Python programming language, features,	Ratan Jana
MD-SEC	and Introduction to	installing python, running code in the interactive shell, IDLE, input, processing	
2.1-2-Th	Latex	and output, editing, saving, and running a script, debugging: syntax errors,	
		runtime errors, semantic errors. Data types and expressions: variables and the	
		assignment statement, program comments and doc strings, data types-numeric	
		integers and floating-point numbers, Boolean string, mathematical operators,	
		PEMDAS, arithmetic expressions, mixed-mode arithmetic and type	
		conversion, type(), input(), print(), program comments, id(), int(), str(),	
		float(). Loops and selection statements: definite iteration: for loop, executing	
		statements a given number of times, specifying steps using range(), loops that	
		count down, Boolean and comparison operators and expressions, conditional	
		and alternative statements- chained and nested conditionals: if, if-else, if-else	
		if else, nested if, nested if-else. Compound Boolean expressions, conditional	
		iteration: while loop-with true condition, break statement, random numbers.	
		loop logic, errors and testing. Strings, lists, tuple, dictionary: accessing	
		characters, indexing, slicing, replacing. Concatenation (+), repetition (*),	
		searching a substring with the 'in' operator, traversing string using while and	
		for. String methods-find, join, split, lower, upper. len(). Lists-accessing and	
		slicing, basic operations (comparison,+), list membership and for loop,	
		replacing element (list is mutable), list methods append, extend, insert, pop,	
		sort. Max(), min(), tuples, dictionaries-creating a dictionary, adding keys and	
		replacing values , dictionary - key(), value(), get(), pop(), traversing a	
		dictionary. Math module: sin(), cos(), exp(), sqrt(), constants-pi, e. Design with	
		functions: defining simple functions-parameters and arguments, the return	
		statement, tuple as return value, Boolean functions, defining a main function,	

dofining and the	aing nonunging functions Warking with Numberry seleviteting
	cing recursive functions. Working with Numbers: calculating
the factors of an	integer, generating multiplication tables, con
Group B: Intro	duction to Latex: Introduction to LATEX: preparing a basic
LATEX file, co	ompiling LATEX file. Document classes: different type of
document classe	es, e.g., article, report, book etc. Page Layout: titles, abstract,
chapters, sectio	ns, subsections, paragraph, verbatim, references, equation
references, cita	tion. List structures: itemize, enumerate, description etc.
Representation	of mathematical equations: inline math, equations, fractions,
matrices, trigor	nometric, logarithmic, exponential functions, line, surface,
volume integrals	s with and without limits, closed line integral, surface integrals,
scaling of pare	entheses, brackets etc. Customization of fonts: bold fonts,
emphasise, mat	hbf, mathcal etc, changing sizes large, larger, huge, tiny etc.
Writing tables:	creating tables with different alignments, placement of
horizontal, verti	cal lines. Figures: changing and placing the figures, alignments
Packages: amsi	math, amssymb, graphics, graphicx, geometry, algorithms,
color, hyperref	etc. Use of different LATEX commands and environments,
changing the typ	be style, symbols from other languages, special characters.

B.Sc. Semester 4 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-8	Riemann Integration &	Unit-1: Riemann integration: Partition of a closed and bounded interval, upper	Ratan Jana
	Series of Functions	Darboux sum and lower Darboux sum, upper integral and lower integral,	
		Darboux's and Riemann's definition of integrability. Concept of negligible set,	
		example of Riemann integrable functions. Integrability of sum, scalar multiple,	
		product, quotient, modulus of Riemann integrable functions. Function defined	
		by definite integral and its properties. Antiderivative, properties of Logarithmic	
		function defined as the definite integral. Fundamental theorem of Integral	
		Calculus, first Mean Value theorem of integral calculus.	
		Unit-2: Improper Integral: Range of integration, finite or infinite, necessary and	
		sufficient condition for convergence of improper integral in both cases, tests of	
		convergence, convergence and working knowledge of Beta and Gamma	
		function and their interrelation.	
		Unit-3: Series of Functions: Sequence of functions, pointwise and uniform	
		convergence, Cauchy criterion of uniform convergence, Weierstrass' M-test,	
		boundedness, continuity, integrability and differentiability of the limit function	
		of a sequence of functions in case of uniform convergence. Series of functions,	
		pointwise and uniform convergence, Cauchy criterion of uniform convergence,	
		Weierstrass' M-test, boundedness, continuity, integrability, differentiability of a	
		series of functions in case of uniform convergence. Power series, fundamental	

		the same of a survey series Coursely Hade and the same distance in the first of the	
		theorem of power series, Cauchy-Hadamard theorem, determination of radius	
		of convergence, uniform and absolute convergence of power series,	
		differentiation and integration of power series, Abel's limit theorems. Fourier	
		series, trigonometric series, Dirichlet's condition of convergence.	
CC-9	Partial Differential	Unit-1: Partial differential equation: Partial differential equations of the first	Shubhankar Podder
	Equation &	order, Lagrange's solution, non-linear first order partial differential equations,	
	Multivariate Calculus-II	Charpit's general method of solution. Derivation of heat equation, wave	
		equation and Laplace equation. Classification of second order linear equations	
		as hyperbolic, parabolic or elliptic. Reduction of second order linear equations	
		to canonical forms. The Cauchy problem, Cauchy-Kowalewskaya theorem,	
		Cauchy problem of finite and infinite string. Initial boundary value problems.	
		Semi-infinite string with a fixed end, semi-infinite string with a free end.	
		Equations with non-homogeneous boundary conditions. Non-homogeneous	
		wave equation. Method of separation of variables, solving the vibrating string	
		problem. Solving the heat conduction problem.	
		Unit-2: Multivariate Calculus-II: Multiple integral, concept of upper sum,	
		lower sum, upper integral, lower-integral and double integral, existence theorem	
		for continuous functions, iterated or repeated integral, change of order of	
		integration, triple integral. Change of variables in double integrals and triple	
		integrals. Transformation of double and triple integrals, determination of	
		volume and surface area by multiple integrals, differentiation under the integral	
		sign, Leibniz's rule. Definition of vector field, divergence and curl. Line	
		integrals, applications of line integrals: mass and work. Fundamental theorem	
		for line integrals, conservative vector fields, independence of path. Green's	
		theorem, surface integrals, integrals over parametrically defined surfaces.	
		Stoke's theorem, the divergence theorem.	
CC-10	Mechanics	Unit-1: Coplanar forces in general, an arbitrary force system in space,	Arkopriya Mallick
CC-10			
		equilibrium in the presence of sliding Friction force.	<u> </u>

		Unit-2: Virtual work, stability of equilibrium.	
		Unit-3: Kinematics of a particle, Newton laws of motion and law of gravitation.	
		Unit-4: Problems in particle dynamics, planar motion of a particle, motion of a	
		particle in three dimensions.	
		Unit-5: Many particles system, the linear momentum principle, the angular	
		momentum principle, the energy principle.	
SEC B	Mathematical Logic	Unit-1: Propositions, truth table, negation, conjunction and disjunction,	Subhadipa Das
		implications, biconditional propositions, converse, contra positive and inverse	
		propositions and precedence of logical operators. General Notions: formal	
		language, object and meta language, general definition of a Formal	
		Theory/Formal Logic.	
		Unit-2: Propositional Logic: formal theory for propositional calculus,	
		derivation, proof, theorem, deduction theorem, conjunctive and disjunctive	
		normal forms, semantics, truth tables, tautology, adequate set of connectives,	
		applications to switching circuits, logical consequence, consistency, maximal	
		consistency, Leindenbaum lemma, soundness and completeness theorems,	
		algebraic semantics.	
		Unit-3: Predicate Logic: first order language, symbolizing ordinary sentences	
		into first order formulae, free and bound variables, interpretation and	
		satisfiability, models, logical validity, formal theory for predicate calculus,	
		theorems and derivations, deduction theorem, equivalence theorem,	
		replacement theorem, choice rule, Prenex normal form, soundness theorem,	
		completeness theorem, compactness theorem, first order theory with equality.	

B.Sc. Semester 4 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
GE-4	Mathematics GE-4	Unit-1: Algebra-II: Group, subgroup, ring, field, subring, subfield, vector	Shubhankar Podder
		space, linear combinations, linear dependence and independence of a finite	
		number of vectors, subspace, concepts of generators and basis of a finite	
		dimensional vector space, problems on formation of basis of a vector space, real	
		quadratic form involving not more than three variables, characteristic equation	
		of square matrix of order not more than three, determination of eigenvalues and	
		eigenvectors, Cayley-Hamilton Theorem.	
		Unit-2: Computer Science & Programming: Computer Science and	Ratan Jana
		Programming: historical development, computer generation, computer anatomy	
		different components of a computer system, operating system, hardware and	
		software. Positional number system, binary to decimal and decimal to binary,	
		other systems, binary arithmetic octal, hexadecimal, etc. Storing of data in a	
		computer - BIT, BYTE, WORD etc. Coding of a data-ASCII, etc. Programming	
		Language: machine language, assembly language and high-level language,	
		compiler and interpreter. Object Programme and source programme. Ideas	
		about some HLL- e.g. BASIC, FORTRAN, C, C++, COBOL, PASCAL, etc.	
		Algorithms and Flow Charts- their utilities and important features, ideas about	
		the complexities of an algorithm. Application in simple problems. FORTRAN	

77/00. inter desetion data terre la service de service en deserie 1.1. interes ment	
77/90: introduction, data type-keywords, constants and variables - integer, real,	
complex, logical, character, subscripted variables, FORTRAN expressions.	
Unit-3: Probability & Statistics: Random experiment, outcome, event, mutually	Arkopriya Mallick
exclusive events, equally likely and exhaustive. Classical definition of	
probability, theorems of total Probability, conditional probability and statistical	
independence, Baye's Theorem. Problems, shortcoming of the classical	
definition, axiomatic approach problems, random variable and its expectation,	
theorems on mathematical expectation, joint distribution of two random	
variables. Theoretical probability distribution discrete and continuous (p.m.f.,	
p.d.f.) binomial, poisson and normal distributions and their properties. Elements	
of statistical methods, variables, attributes. Primary data and secondary data,	
population and sample. Census and sample survey. Tabulation chart and	
diagram, graph, bar diagram, pie diagram etc. Frequency distribution un-	
grouped and grouped cumulative frequency distribution. Histogram, frequency	
curve, measures of central tendencies. Averages: AM, GM, HM, mean, median	
and mode. Measures of Dispersions-range, quartile deviation, mean deviation,	
variance / S.D., moments, skewness and Kurtosis. Sampling Theory: meaning	
and objects of sampling, some ideas about the methods of selecting samples,	
statistic and parameter, sampling proportion. Four fundamental distributions,	
derived from the normal: standard normal distribution, Chi-square distribution,	
student's distribution, Snedecor's F-distribution. Estimation and test of	
significance, statistical inference, theory of estimation point estimation and	
interval estimation, confidence Interval / confidence limit. Statistical	
Hypothesis - null hypothesis and alternative hypothesis, level of significance,	
critical region, type I and II error. Bivariate frequency distribution, scatter	
diagram, co-relation co-efficient, regression lines.	
<i>o</i> , <i></i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> ,	

B.Sc. Semester 6 (Honours under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
CC-13	Metric Space &	Unit-1: Metric Space: Definition and examples of metric spaces, open ball,	Shubhankar Podder
	Complex Analysis	open set, closed set, interior point and interior of a set, limit point and	
		closure of a set, boundary point and boundary of a set, bounded set and	
		diameter of a set, distance between two sets, subspace of a metric space.	
		Convergent sequence, Cauchy sequence, completeness, Cantor's	
		intersection theorem. Continuity, uniform continuity. Compactness,	
		sequential compactness, Heine-Borel theorem in \mathbb{R} , finite intersection	
		property, continuous functions on compact sets. Concept of connectedness,	
		contraction mappings, Banach Fixed point Theorem and its application to	
		ordinary differential equations.	
		Unit-2: Complex Analysis: Stereographic projection, regions in the	
		complex plane, limits, continuity of functions of complex variable.	
		Derivatives, Cauchy-Riemann equations, sufficient conditions for	
		differentiability, analytic functions, exponential function, logarithmic	
		function, trigonometric functions, hyperbolic functions, Möbius	
		transformation. Power series, Cauchy-Hadamard theorem, radius of	
		convergence, uniform and absolute convergence of power series, analytic	
		functions represented by power series, uniqueness of power series.	
		Contours, complex integration along a contour, upper bounds for moduli of	
		contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.	

CC-14	Numerical Methods	Unit-1: Representation of real numbers, machine Numbers - floating point	Ratan Jana
		and fixed point, sources of Errors, rounding of numbers, significant digits	
		and error propagation in machine arithmetic operations. Numerical	
		Algorithms - stability and convergence.	
		Unit-2: Approximation, interpolation, central interpolation.	
		Unit-3: Numerical differentiation, numerical integration.	
		Unit-4: Bisection method, Secant method, Regula-falsi method, fixed point	
		iteration, Newton-Raphson method. Condition of convergence (if any),	
		order of convergence, rate of convergence of these methods. Modified	
		Newton-Raphson method for multiple roots, complex roots of an algebraic	
		equation by Newton-Raphson method. Numerical solution of system of	
		nonlinear equations - Newton's method.	
		Unit-5: System of linear algebraic equations, Gauss Jacobi method, Gauss	
		Seidel method and their convergence analysis, LU decomposition method.	
		Matrix inversion, the algebraic eigenvalue problem.	
		Unit-6: Single-step difference equation methods- error, convergence. The	
		method of successive approximations (Picard), Euler's method, the	
		modified Euler method, Runge-Kutta methods of orders two and four.	
CC-14	Numerical Methods Lab	1. Calculate the sum $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$.	Ratan Jana
(Practical)		2. Enter 100 integers into an array and sort them in an ascending order.	
		3. Bisection method, Newton Raphson method (Simple root, multiple	
		roots, complex roots), Secant method, Regula Falsi method.	
		4. LU decomposition method, Gaussian elimination method, Gauss-	
		Jacobi method, Gauss-Seidel method.	
		5. Lagrange Interpolation, Newton's forward, backward and divided	
		difference interpolations.	

 6. Trapezoidal Rule, Simpson's one third Rule, Weddle's Rule, Gauss Quadrature. 7. Method of finding eigenvalue by power method (up to 4 × 4). 	
7. Method of finding eigenvalue by power method (up to 4×4).	
8. Fitting a polynomial function (up to third degree).	
9. Euler method, Modified Euler method, Runge Kutta method (order 4),	
The method of successive approximations (Picard).	
DSE A(2) Mathematical Modelling Unit-1: Power series solution of Bessel's equation and Legendre's equation, Laplace transform and inverse transform, application to initial value problem up to second order.	
Unit-2: Monte Carlo simulation modelling: simulating deterministic	
behavior (area under a curve, volume under a surface), generating random	
numbers: middle square method, linear congruence, queuing models:	
harbor system, morning rush hour, overview of optimization modelling.	
Linear programming model: geometric solution algebraic solution, simplex	
method, sensitivity analysis	
DSE B(2) Point Set Topology Unit-1: Topological spaces, basis and subbasis for a topology, Subhadipa I	las
neighbourhoods of a point, interior points, limit points, derived set,	
boundary of a set, closed sets, closure and interior of a set, dense subsets,	
subspace topology, finite product topology, continuous functions, open	
maps, closed maps, homeomorphisms, topological invariants, metric	
topology, isometry and metric invariants.	
Unit-2: First countability, T_1 and T_2 separation axioms of topological	
spaces, convergence and cluster point of a sequence in topological spaces	
and some related concepts on first countable as well as on T_2 spaces,	
Heine's continuity criterion.	
Unit-3: Connected spaces, connected sets in R, components, compact	
spaces, compactness and T_2 , compact sets in \mathbb{R} , Heine-Borel Theorem for	

\mathbb{R}^n , real valued continuous function on connected and compact spaces, the	
concept of compactness in metric space, sequentially compactness of a	
metric space X and the Bolzano- Weiertrass property of X are equivalent.	

B.Sc. Semester 6 (General under CBCS)

Course	Course Name	Brief Description of the Course	Name of the Faculty
Code			
SEC-B	Boolean Algebra	Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements, lattices as ordered sets, complete lattices, lattices as algebraic structures, sublattices, products and homomorphisms. Definition, examples and properties of modular and distributive lattices, Boolean algebras. Boolean polynomials, minimal forms of Boolean polynomials, Quinn-McCluskey method, Karnaugh diagrams, switching circuits and minimization of switching circuits using	
		Boolean algebra.	
DSE-B	Advanced Calculus	Pointwise and uniform convergence of sequence of functions and series of functions with special reference of power series, Weierstrass M-Test for uniform convergence of sequence of functions and of series of functions, simple applications, statement of important properties like boundedness, continuity, differentiability and integrability of the limit function of uniformly convergent sequence of functions and of the sum function of uniformly convergent series of functions, radius of convergence of power series, term by term integration and term by term differentiation of power series, Abel's theorems on power series, convergence of power series.	
		Periodic function, Fourier series, determination of Fourier coefficients, Dirichlet's conditions of convergence and statement of the theorem on convergence of Fourier sine and cosine series.	

Laplace Transform and its application to ordinary differential equation,	Arkopriya Mallick
Laplace transform and inverse Laplace transform, statement of existence	
theorem.	