HARIMOHAN GHOSE COLLEGE

DEPARTMENT OF MATHEMATICS

PROGRAMME OUTCOME OF MATHEMATICS HONOURS COURSE (UNDER CBCS)

<u>PO-1</u>: This course endeavours to acquaint students with the concepts of various papers of mathematics as well as to involve them in critical thinking and scientific analysis.

<u>PO-2</u>: Providing essential foundation in the gross field of Pure and Applied Mathematics for students will help them to develop the ability to apply quantitative tools and techniques for solving various mathematical problems.

<u>PO-3</u>: The deep grasp acquired by the students after completing the course helps them to opt for any interdisciplinary field of science and technology for higher studies and to establish themselves accordingly.

<u>PO-4</u>: This course enables the students to develop a critical approach towards their subject of study and to apply their power of thinking in solving mathematical problems and consequently prepares them to embrace research area.

<u>PO-5</u>: Learning basic programming language makes the students proficient and gives an additional advantage of acquiring software skill in the world of software technology.

<u>PO-6</u>: Upon completion of the study, students will have competence to apply Mathematical Modelling to solve any real-life problems and this itself is conductive to great career opportunities in numerous fields.

HARIMOHAN GHOSE COLLEGE DEPARTMENT OF MATHEMATICS

PROGRAMME OUTCOME OF B.SC GENERIC ELECTIVE COURSES (UNDER CBCS):

PO-1: This course in Mathematics provides a strong foundation for Basic Sciences and Mathematics as well as helps student to identify, formulate and create mathematical ideas effectively.

PO-2: Understanding and critically analyzing the fundamental concepts in Mathematics are very useful in assisting students apply theoretical knowledge for solving various real-life problems.

PO-3: The basic knowledge of various branches of Mathematics that includes algebra, calculus, geometry makes it possible for the students to develop critical thinking skills and to pursue higher studies in any interdisciplinary field of science.

PO-4: Utilizing the computational techniques and the basic knowledge in programming language, students will be able to build up a successful career in their future.

PO-5: Students are expected to have developed the capability of quantitative reasoning skill which will help them to enhance their employability for different types of jobs.

HARIMOHAN GHOSE COLLEGE

DEPARTMENT OF MATHEMATICS

<u>COURSE OUTCOME OF MATHEMATICS (HONOURS) UNDER</u> <u>CBCS</u>

SEMESTER	COURSE	COURSE	COURSE OUTCOMES
	CODE	NAME	
1 st Sem	CC1	Calculus, Geometry & Vector Analysis	 * This course is designed to provide students with skills to compute limits, derivatives and integrals of a function and to use applications of vector algebra in real life. * The knowledge of geometry will enable students to solve tangents, normal, chords of a conic in 2D and will provide the concept of 3D to solve 3D related problems. * Students will be able to solve various problems of vector analysis which is applicable to various branches of Mathematics and Physics.
	CC2	Algebra	*The knowledge of algebra helps to develop students' critical thinking skills that includes problem solving, logic, patterns and reasoning. *Students will be able to understand the concept of relation, mapping, number theory, matrix and determinants.
2 nd Sem	CC3	Real Analysis	*The students will go through the concept of sequence, convergence of a sequence and its important theorems. *From this course, students will learn the fundamental properties of the real numbers that underpin the formal development of real analysis.
	CC4	Group Theory- I	*In this course students will be able to understand the concept of cyclic group, finite group, permutation group, co-set and its applications along with Lagrange's theorem and Fermat's theorem. *They will have the capability to gain knowledge of the concept of normal

			subgroup, quotient group, Cayley's Theorem, and First, Second, Third
3 rd Sem	CC5	Theory of Real Functions	 isomorphism theorems. Students will learn limit, continuity, uniform continuity, differentiability of a function at a point. Students will also acquire the concept of maxima minima of a function in an interval
	CC6	Ring Theory & Linear Algebra-I	 interval. This course aims to give students the basic knowledge of rings, subrings, fields, ring homomorphism, isomorphisim and related theorems. This portion plays a key role in the higher study of linear algebra in which tudents will learn to compute eigenvalues and eigenvectors. They will also learn the Cayley-Hamilton theorem and its use.
	CC7	ODE & Multivariate Calculus-I	 This course provides the visualization and manipulation of ODEs in numerical and symbolic form. Students will be able to understand the concepts of existence and uniqueness of solutions. Multivariate calculus has useful applications on various branches of Mathematics and Physics.
	SEC-A	C Programming Language	 Students can have a good grasp of C language and they will be able to develop logics which helps them to create programs and its applications. Students will obtain the basic concept of foundation of computer, different generation, hardware and software, algorithm, flowchart.
4 th Sem	CC8	Riemann Integration & Series of Functions	 This course offers students the proper idea to learn Riemann integration of bounded real valued functions, integrability of sum, scalar multiple, product, quotient of Riemann integrable functions. Students will acquire knowledge of sequence of functions, point of convergence, uniform convergence, power series.
	CC9	PDE & Multivariate Calculus-II	•In this course students will learn the skill for solving problems of certain

			1
			types of linear and non-linear partial differential equations.
			* They will also acquire knowledge of
			certain types of second order partial
			differential equations and their
			-
			applications in Mathematical Physics.
			•Students will get an idea for solving
			problems on multiple integral and centre
			of gravity, surface and volume of
			revolution, vector calculus and their
			applications in Mathematical Physics.
	CC10	Mechanics	•Students will get an overview of
			Analytical Statics related to coplanar
			forces, friction, virtual work, forces in
			three dimension, stable and unstable
			equilibrium and centre of gravity.
			•They will be able to learn rectilinear and
			planar motion of a particle in both
			cartesian and polar system, simple
			harmonic motion, central orbit, motion
			under inverse square law and planetary
			motion.
			• Students will also have the capability to
			solve problems on system of many
			particles, collision of elastic bodies,
			work-power-energy.
	SEC-B	Scientific	•This course introduces the theory of
		computing	Scientific Computing which enables
		with Sage	students to install and read data files in
		Math & R	R/SageMath.
			•Students will acquire basic knowledge
			and skill in numerical and symbolic
			computations using mathematical
			functions.
5 th Sem	CC11	Probability &	•This course provides the idea of
		Statistics	probability theory helping the students to
			calculate probabilities using conditional
			probability, rule of total probability and
			Bayes' theorem.
			•They will be able to explain the concept
			of random variable, probability
			distributions.
	CC12	Group theory-	•From the course of Group Theory,
		II & Linear	students will get an idea of
		Algebra-II	automorphisms, direct product and
			results related to finite abelian groups
			such as converse of Lagrange's theorem,
			Cauchy's theorem.
			•They will also learn about vector spaces
			that will allow them to appreciate Linear

	DSE-A(1)	Bio	Algebra as a tool for learning Geometry of higher dimensional spaces through the language of Algebra. •They will also be able to solve problems related to matrix theory up to orthogonalization. •Students will learn Euclidian Space which will help them to understand the mathematical theory behind the Linear Programming problems. •Students can have an enhanced
		Mathematics	 knowledge and understanding of mathematical modeling and statistical methods in the analysis of biological systems. Students will acquire knowledge of application of dynamical systems and mathematical modelling of biological problems They will learn the behavior of discrete and continuous population and their behaviors, which are studied by applying the different tools of linear and non-linear system of ODE and PDE.
	DSE-B(1)	Linear Programming and Game Theory	 This course discusses the theory of basic feasible solutions and their properties, convex sets based on the knowledge of linear algebra studied in previous semesters. They will have the skills in the solution of a Linear Programming Problem by Simplex Method. They will also acquire knowledge on duality, transportation problem, assignment problem and travelling salesman problem. Students will obtain some knowledge on the basic theory of game problems and their solution by different methods which has many applications in Economics.
6 th Sem	CC13	Metric Space & Complex Analysis	 Students will be able to identify curves and regions in the complex plane defined by simple expressions, basic properties of complex integration, analytic functions and to develop the ability to compute such integrals. This course will make a foundational concept of metric spaces and its important properties, i.e., convergence

			agguarge Caughy agguarge
			sequence, Cauchy sequence,
			completeness property, Cantor's
			intersection theorem, continuous
			mapping, uniform continuity, sequential
			compactness, Heine-Borel theorem in \mathbb{R} ,
			connectedness etc.
	CC14	Numerical	•Students will go through the concepts in
		Methods	Numerical Analysis and acquire
		i i i i i i i i i i i i i i i i i i i	theoretical knowledge that will lay the
			foundation for solving problems via
			computer programming.
			•Students will obtain the basic skill for
			solving problems via computer
			programming related to various
			numerical methods on interpolation,
			numerical differentiation and integration,
			differential equations and finding roots
			of an equation.
	CC14	Numerical	•From this course students will be able to
	Practical	Methods	compute the values of any mathematical
		Practical	task with the help of the numerical
		Tuetteur	methods like interpolation,
			differentiation, integration and they will
			also be able to find the solution of linear
			and nonlinear equations with the help of
		D :00	computer software programming.
	DSE-A(2)	Differential	•This course is an introductory course in
		Geometry	Tensors, Riemannian space and Einstein
			space.
			• Students will be able to learn the theory
			of space curves and surface.
	DSE-B(2)	Point Set	•This course describes the concept of
	~ /	Topology	topological spaces, basis and subbasis
			for a topology, continuity of a function
			in topological space, finite product
			topology, homeomorphism, isometry and
			metric invariants.
			•Equip the students with the concept of
			separation axioms of topological spaces,
			connected and compactness in
			topological spaces.
1	1	1	

COURSE OUTCOME OF MATHEMATICS (GENERAL) UNDER <u>CBCS</u>

SEMESTER	COURSE	COURSE	COURSE OUTCOMES
	CODE	NAME	
1 st Sem	CC1/GE1	Algebra-I, Differential Calculus-I, Differential Equation-I, Coordinate Geometry	 From this course, students will acquire the concept of complex number, polynomial and matrix theory. They will be able to learn real number, limit, continuity and differentiability of a real valued function and partial derivatives. Students will obtain the knowledge of ordinary differential equation and the existence and uniqueness of solution of ODE. This portion helps the students in solving the problems on pair of straight lines, classification of conics and reduction of their standard forms, tangents, normal, chords of a conic in two-dimensional and three dimensional analytical geometry.
2 nd Sem	CC2 / GE2	Differential Calculus-II, Differential Equation-II, Vector Algebra, Discrete Math.	 Students will be able to learn about convergence and divergence of infinite series of constant terms, mean value theorem, application of principle of maxima and minima for a function in single variable in geometrical and physical problems. They will also learn about solution of linear homogeneous and non-homogeneous equations with constant coefficients. Students will acquire knowledge on vector operations and its applications.
3 rd Sem	CC3 / GE3	Integral Calculus, Numerical Methods, Linear Programming	 Students will be able to comprehend the concept of improper integration, Beta and Gamma functions, convergence of improper integration and its applications. They will learn the concept of numerical methods, interpolation, differentiation, integration and numerical solution of transcendental equations. Students will obtain the knowledge on linear programming and basic idea of linear algebra, different methods of LPP .
	SEC-A	C Programming Language	•From this course students will acquire knowledge on foundation of computer,

			 different generation, hardware and software, algorithm, flowchart. •Students will be able to solve various problems with C-programming which may/may not be solved analytically.
4 th Sem	CC4 / GE4	Algebra-II, Computer Science & Programming Probability & Statistics	 From this course, students will acquire knowledge on groups, rings, fields, vector space over a field, eigenvalues & eigenvectors etc. The main objective of the programming language is to provide the students the basic concept of computer generations and computer anatomy, number systems, concepts on different programming languages and algorithms & flow charts. Students will be able to learn the rule of probability , Bayes' Theorem and to calculate probabilities using conditional probability. They will also be able to explain the concept of random variable, the probability distributions and to analyze statistical data.
	SEC-B	Mathematical Logic	•After completion of the course students are expected to be able to analyze logical propositions via truth tables.
5 th Sem	SEC-A	Object Oriented Programming in C++	•Students will be able to demonstrate an understanding of algorithms in the problem- solving process, to identify the necessary properties of good problem-solving techniques and to create and analyze algorithms for solving simple problems.
	DSE-A	Graph Theory	 This course describes the theory of graphs, pseudographs, complete graphs, isomorphisim of graphs. Students will learn the concept of path and circuit and related theorems. Students will be able to know about the Kuratowski's graphs.
6 th Sem	SEC-B	Boolean Algebra	 This course offers students to learn how to use truth tables and laws of identity, distributive, commutative and domination. Equip the students with the skill to compute sum of products and product of sum expansions and convert boolean expressions to logic gates and vice-versa.
	DSE-B	Advanced Calculus	•Students will be able to know about the concept of uniform convergence and point wise convergence of sequence and series of functions.

•Students will learn about power series and
Fourier series and its properties.
*They will get the idea of Laplace
Transform and their properties which can be
used to solve ODE.